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Abstract. The influence of the cubic anisotropy both in the quadratic and quartic part of 
an n-component ‘spin’ Hamiltonian is examined in the framework of a parquet-graph 
summation. For values of the anisotropy parameter f larger than a critical value, f- , a 
first-order transition occurs which corresponds to the appearance of complex fixed points 
in the renormalization group approach. On the other hand for f < f- a first- or second- 
order transition occurs depending on 1; n and the values of the bare coupling constants. 
For second-order transitions a quantity m(n,f) plays the role of an effective number of 
components, m(n, 0) = n. For m > 4 and m < -8 the system has a strongly cubic behaviour 
whereas for 0 < m < 4 a weakly cubic behaviour is observed ; the latter changes to pure 
isotropic behaviour for f- 0. For -8 < m < 0 the behaviour is strongly or weakly cubic 
depending on the values of the bare coupling constants. The (effective) critical exponents 
71, a calculated to O(C) or O(no) depend on the anisotropy parameters The results give an 
explanation for the first-order transition in KMnF, and the decrease of the exponent p 
as T,  is approached in SrTiO,. 

1. Introduction 

Many attempts have been made in recent years to elucidate the properties of anisotropic 
systems close to their critical points. In particular, the effect of cubic anisotropy has been 
considered within the renormalization group approach by several authors (eg Cowley 
and Bruce 1973, Wallace 1973, Ketley and Wallace 1973, Aharony 1973a,b,c, Brezin et al 
1974). In fact, the anisotropy may change the critical behaviour of the system drastically. 
For instance, it may lead to a first-order transition (Wallace 1973) or to a different 
critical behaviour (Aharony 1973b). However, most of the papers are restricted to some 
cases of cubic anisotropy in the quartic (single-ion) term of the Hamiltonian breaking 
the full rotational symmetry. The reason is that one believes that the parameter f 
measuring the quadratic anisotropy becomes an irrelevant variable in the immediate 
vicinity of the critical point (Bruce 1974), although this result was obtained with some 
additional assumptions. But even if this is the case one expects that the anisotropy 
parameterfdecays so slowly that there is a large region where the quadratic anisotropy 
has to be taken into account. Therefore, in this paper both the quadratic and the quartic 
(cubic) anisotropy will be considered above the transition temperature T,  in the frame- 
work of a parquet-graph expansion. 

In the scaling region the results of this approach go over into the renormalization 
group results to order c or no, respectively. Moreover, the parquet approximation leads 
to a description of the systems which is applicable in the whole critical domain up to the 
mean field region (Nattermann and Trimper 1974, Nattermann 1975). It is important 
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to note that our approach exploits none of the arguments of the different practical re- 
normalization group calculations, eg there is no claim that the expressions exponentiate 
as in the r-expansion. In fact, the small quantities of our perturbation theory are the 
vertex parts rl and r2 proportional to the bare coupling constants. 

The main advantage of our approach is that it also works in cases where the asymp- 
totic critical region is not reached and a first-order transition occurs. This situation 
corresponds to the occurrence of complex fixed points or the absence of fixed points 
generally in the renormalization group scheme. 

In order to get a larger variety of the behaviour of the system, here the number n of 
order-parameter components is assumed to be different from the space dimension d 
because of the introduction of an additional anisotropy. For the sake of completeness 
the case n < 0 is also considered by an analytic continuation with respect to n. 

The paper is organized as follows : in 0 2 the Hamiltonian for a system with cubic 
anisotropy is written in the notation of Aharony and Fisher (1973) in the reduced form. 
The Bethe-Salpeter equations for the renormalized coupling constants and Ward’s 
identity for the inverse susceptibility are derived in the parquet approximation in 9 3. 
To solve these integral equations it turns out that it is necessary to distinguish between 
the cases of weak and strong quadratic anisotropy. Moreover, the possibility of the 
occurrence of a first-order transition will be discussed in 0 4. Section 5 is devoted to the 
calculation of the critical exponents. Further, the connection of our method to the 
fixed point equation of the renormalization group technique is established. Some 
applications of our results are discussed in 9 6. 

2. TheHamiltonian 

The Hamiltonian for the description of an anisotropic cubic system may be written in 
the reduced form (Aharony and Fisher 1973) 

The Hamiltonian (2.1) is appropriate for the description of magnetic, ferroelectric or 
structural phase transitions. Corresponding to these cases the &component vector 
(Qf} is interpreted as the classical spin vector, the normal coordinate of the soft mode 
or a staggered rotation angle, respectively. 

Whereas one obtains the Hamiltonian (2.1) for the investigation of a magnetic system 
by adding a spin weighting function which restricts the fluctuations in the spin length, 
the Hamiltonian (2.1) emerges naturally from anharmonic lattice theory in the case of 
displacive type transitions (Cowley and Bruce 1973). In the latter case, as distinct from 
the magnetic case, the parameters uo and uo reflect the strength of the anharmonic poten- 
tial and can be measured by various methods. The occurrence of anisotropy is mani- 
fested in two ways : through the anisotropy parameter f in the dispersion relation and 
through the quartic term with the prefactor u o .  Contrary to the previous papers on this 
subject here all values forf, uo and uo compatible with the stability requirements will 
be considered. For 1 > f > 0 the correlations between different spins are ‘pancake’-like 
whereas for f < 0 the correlations become needle shaped. 

Because of the quadratic anisotropy in (2.1) which couples ‘spin’ and space variables 
one has to choose ii = d ,  where d denotes the space dimensionality. However, in accord 
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with the arguments of universality it would be desirable to relax the connection between 
ii and d. This can be done-as proposed by Aharony (1973a j b y  an appropriate choice 
of the parameter roa.  Namely, roa = ro for t~ = 1,. . . , n < d and roDl = ro+6 for the 
remaining d-n components. As usual 6 > 0 and hence the latter (subdominant) 
components do not influence the critical behaviour. The advantage of disconnecting f i  
from d is that, in the case of vanishing quadratic anisotropy, the results can be related 
directly to those obtained previously for quartic anisotropy only. 

3. Perturbationtheory 

Restricting ourselves as usual to the static part of the propagator we define it by 

with 

ga(q) = ( r+q2- fq ,Z) - ’ .  (3.2) 

Here, because of the self-consistency of our calculations ro is replaced by r(ro) with 
r(roc) = 0. To our degree of accuracy we do not obtain a renormalization of the q 
dependence of the propagator. (In the scaling region this renormalization is of order 
O(c2) and O(n- ’) whereas we restrict ourselves to O(t) and O(no), respectively.) In the 
usual perturbation theory the inverse susceptibility r is calculated by summing up 
certain classes of diagrams which are classified with respect to the unrenormalized vertex 
parts. However, it is well known that this procedure fails in the immediate vicinity of the 
critical point because near T, the assumed smallness of the unrenormalized vertex part 
is cancelled by the smallness of r .  This is the reason that we begin with the calculation 
of the renormalized vertex parts r l ,  r2 corresponding to the bare coupling constants 
uo and u o ,  respectively. The first contribution to rl ,  T2 follows from the elementary 
polarization diagram which is evaluated in appendix 1.  Within the parquet approxima- 
tion all higher-order graphs are extracted from this elementary bubble (figure l(a)) 
denoted by Aap(r,  p )  : 

Here p denotes the external momentum. Depending on the possible ratios of the 
parameters r , f  and the cut-off A, expression (3.3) reveals different behaviour. Indeed, for 
zero external momentum there are four different cases : 

(a)  f > 0 and (1 -f)A2 5 r << A2;  
(b) f -= 0 and A2 6 r << ( 1  -f)A2; 
(c) r << (1 -f)A2, A’; 
(d) A’, (1 -f)A2 << r. 

In case (a) the behaviour is essentially ( d -  1) dimensional whereas in case (b) one- 
dimensional behaviour is simulated. For temperatures close to T, ,  r becomes suffi- 
ciently small and hence in case (c )  a d-dimensional behaviour occurs. Case (d) is without 
interest because it corresponds to the region where the Landau theory is still valid. In 
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( C )  

Figure 1. Lowest-order diagrams to the renormalized quartic (a, b) and higher-order 
coupling constants (c)  arising from quartic (a) and higher-order interactions (b, c). 

the following we restrict ourselves to region (c), eg to the vicinity of the critical point. 
Here we assume that regions (a) or (b) are small or are located entirely in the range where 
the Landau theory is applicable. We are forced to this since our perturbation theory 
works only in the region 2 < d < 4. Moreover, if we exclude the borderline case 
d = 4 we can extend the range of integration to infinity (A -P CO). From this fact we 
obtain a direct connection between the critical domain (c) and the mean field region. 

Under these assumptions AaB(r, p = 0) is calculated in appendix 1 .  The final result is 

(3.4) 

(3.5) 

AaB(T7 P = 0) = I a p ( f ) K d x  

I a & f )  = ~ ( f ) ( l  + h ( f ) ( s a , -  1)) ;  

where x = r ( 2 - - ~ / 2 ) r ( ~ / 2 ) ~ -  ‘”, E = 4-d, I a e ( f )  is defined in (A.2): 

0 < s(f)  < 4. 

The functions p ( f )  and s(f) are measures of the quadratic anisotropy and are presented 
in appendix 1, and in figure 2. To our degree of accuracy the renormalized coupling 
constants follow from the summation of all parquet diagrams (Larkin and 
Khmel’nitskii 1969). Extending this method to the summation of non-logarithmic 
corrections (Ginzburg 1974, Nattermann 1975, Nattermann and Trimper 1974) one 

f 
Figure 2. Anisotropy function s(f) againstffor 0 < f G  1 
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obtains for the renormalized vertex parts 

(3.6a) 

(3.6b) 

The tensor structure of raBra is the same as (3.6b) with U and v replaced by rl and T2, 
respectively. For zero external momentum the renormalized vertex parts depend only 
on r,  ie on x. Then after some tedious calculations we get from (3.6a) 

(3.74 

(3.7b) 

with 0 ,< s < 4. The equations (3.7) include some cases considered previously by several 
authors. For vanishing cubic anisotropy T2 becomes zero and rl  reduces to the re- 
normalized coupling constant of the isotropic n-vector model (Wilson and Kogut 1974). 
In the opposite case of strong anisotropy s -+ 4 and for n = 3 equations (3.7) change over 
into those considered recently by Khmel'nitskii and Shneerson (1973) for a three- 
dimensional system at low temperatures. One sees further from equation (3.76) that 
the anisotropic form of the dispersion relation creates an anisotropy of the vertex part 
raPyd even in the case of vanishing U .  This fact was already observed by Aharony and 
Fisher (1973). On the other hand the vertex part anisotropy does not influence the 
dispersion relation (to our degree of accuracy). This is the main reason that we consider 
both kinds of anisotropy. 

From physical grounds stated in the previous section it follows that s # 0 is meaning- 
ful only for 1 < n < 4. However below we will treat equations (3.7) formally with 
s # 0 for all n and take-if necessary-s = 0 only in the final expression. The continua- 
tion to n < 0 was considered in detail by Fisher (1973). For n = l ,  rl and r2 are no 
longer independent coupling constants and in the equation for the full vertex part 
f = rl + T2, s does not appear (see appendix 3). 

For our further calculations it is important to note that T,(x) and U have the same 
signs for all x. Indeed, in the case where Tl(xl) = 0, all derivatives of T,(x) also vanish 
at x1 (because of equation (3.7)) leading to T,(x) 0 for all values x, in contradiction with 
r,(O) = U # 0. For the sake of completeness we remark that for U = rl = 0 the system 
decays into n Ising systems, each of which corresponds to n = 1. 

The stability of the system is related to the boundedness from below of the free 
energy which requires the positivity of the interaction part : 

rap,dQ"oQBoQ'oQdo > 0. (3.8) 

r,+r2 > o (3.94 

Writing Q; = Qona with E:=, n,' = 1 we get from (3.8) 

rl  + ( i / n r ,  > o (3.96) 
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where the inequalities (3.9) become essential for U > 0 and U < 0, respectively. If one 
of these inequalities is violated interaction terms proportional to wn(Q2)” higher than 
fourth order have to be taken into account. Here, we will assume that all the contribu- 
tions from such Q2” terms (n > 2), giving rise to a renormalized transition temperature 
and effective fourth-order coupling constants, are already included in roc ,  U ‘and u, 
respectively. (Below we suppose that the stability conditions are always fulfilled at 
x = 0, ie U + U > 0, U + u/n > 0.) The perturbation theory for the Ti incorporating the 
remaining contributions from the Q2” terms will again be developed from the second- 
order graphs. These graphs include 2(n- 1 )  internal lines connecting two w, vertices 
(figure l(b)). A simple power counting shows then, that these graphs become less 
important than the bubble (figure l(a)). Indeed, we obtain for the leading contributions 
to the T i :  constant x ~ i r ~ ( ~ - ~ ) -  ‘(”- 3’2) , n > 2. It follows that the inclusion of higher- 
order interaction terms cannot change the sign of the expression (3.8). However, in the 
case where (3.8) becomes negative, owing to the quartic interaction, before the transition 
point is reached, these additional terms lead to a first-order transition (such a conclusion 
was also drawn by Khmel’nitskii and Shneerson 1973). A corresponding effect in the 
Bethe-Salpeter equations for the renormalized (Q2)” interaction does not occur in the 
case where E < 1 because their leading contributions are terms proportional to 
W,2r+d(n- 1) -n  (figure l(c)). They become important only for d < 2n/(n- 1 )  in the case 
of polycritical phenomena (Chang er al 1974). 

The Green functions can be obtained from Tl  and r2 from Ward’s identity (Larkin 
and Khmel’nitskii 1969) : 

aG,p1(r)/8ro = Aub(r) (3.10) 

Aap(r) = hup- 1 2 ( ~ / ~ 0 ) ( 2 7 ~ ) - ~  I,* ddqrap,,(q’)G,,(q)G,,(q)A,,(q). (3.1 1 )  

With Aap(r) = A ( X ) ~ , ~  and equations (3 .1H3.6~)  we get after differentiation with respect 
to x 

or 

(3.12) 

(3.13) 

We see that the dispersion anisotropy enters equation (3.13) only through equations 
(3.7). Both equations, (3.7) and (3.13), describe the behaviour of the system in the whole 
transition region. 

4. Discussion of the integral equations 

In order to solve the system of integral equations (3.7) it turns out to be convenient to 
introduce the quantities 

s) (4.1) c = ‘(n-4- 6 
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The values off corresponding to s* will be denoted byf,. From (4.2) it is natural to 
distinguish the following three main cases which exhibit different critical behaviour as 
we will see below: 

(i) b2 > 0, (ii) b2 c 0, (iii) b2 = 0. (4.4) 

The different domains of the n - s ( f )  plane corresponding to these cases are depicted 
in figure 3. 

AS I 

A 
m< -8 

m=-8 /-! 4 8 12 n 

Figure 3. Plane of the anisotropy function s and the number of components n with the 
curves m(n,s)  = constant. The domain of case (i) is depicted by the vertical hatching. 
The horizontal hatching encloses the domain where strong or weak cubic behaviour is 
found depending on the initial conditions ( -  8 < m < 0). The slanting hatching represents 
the weakly cubic region (0 < m < 4). Case (iii) coincides with the curve m = 4 and case (ii) 
corresponds to the remaining areas. 

m = - 2  I l m = '  

We start with the discussion of case (i) which also includes the case of strong aniso- 
tropy for 2 < n < 4 by defining a new function $ ( x ) :  

r2 = (++c)r,. (4.5) 
Differentiating equations (3.7) and (4.5) with respect to x and using 

r;/r; = $+C+rlq/r; 
we find after some calculations 

q c + l )  -tan-' 1 rl = u,exp ~ 

' 2 + b 2  y 2 + b  { b [ (%) ( b ) ] }  
with 

U 

U 
y = $(O) = - - c .  

From equations (3.7), (4.5) and (4.6) one gets further 

Equation (4.7) always leads to unstable solutions. Indeed, considering to begin with 
U > O , f ( $ )  is negative for all $ and hence $(x) becomes - cc at 
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For x + xo we find from equations (4.5)-(4.8a) 

$(x) a - (xo - x)- 1’3, 

ie the renormalized vertex parts diverge for x .+ xo. As a consequence, our starting 
equations (3.7) are no longer valid since for large ri one cannot restrict oneself to the 
lowest-order contributions in the Bethe-Salpeter equations (3.7). 

However, before the point xo is reached the system becomes unstable at x* due to 
the violation of the stability condition ( 3 . 9 ~ ) :  

r,(X) a ( X ~ - X ) - ~ / ~ ,  r2(x) a - (x0-x)- l ,  

Similarly, for U < 0, $(x) becomes infinite at 

(4.94 

(4.8b) 

hence $(x) a (xo - x)- ‘ I 3 ,  T,(x) a (xo - x)-’l3, T2(x) a (xo - x)- for x + xo. Here 
the inequality (3.9b) is violated at 

(4.9b) 

Thus, a sufficiently large quadratic anisotropy in the range 1 < n < 15 (figure 2) leads 
to an instability before the critical point is reached. An estimation shows that Tl(x*), 
T2(x*) are of order U ,  hence our basic equations (3.7) are valid up to the instability 
point. It is easy to see that x* increases with decreasing b and becomes 00 for b = 0, 
ie the transition changes from first to second order. Therefore for small b there is a 
large temperature region not too close to the transition point where the system seems to 
undergo a second-order transition. Actually, in the case where yu > 0, $(x) will change 
its sign and then for $(x) 6 0 there is a domain where the integration of equation (4.7) 
yields 

4(c + l)xu- r’:,”’ exp {4(cb+1)[tan-1($)-tan-1(s)l] ~ = 1. (4.10) 

From this solution we are able to calculate critical exponents as will be shown in 0 5. 

change over to new vertex parts r and r A  by means of the transformation 
As it turns out, case (ii) becomes more complex. Because of this it is convenient to 

r = (1 +A)r1 r A  = r2 - ir, 
with 

(4.1 1) 

A = A(n, s) = c f J(c’ -3s) c ([cl - Lo). (4.12) 

Inserting (4.1 1) into (3.7) one obtains a new set of equations for an m-component system 
including only vertex part anisotropy, but with a non-integer number m of components : 

n - s - 2 1  
1 + A  

m = m(n, s, A) = U L  = ( l + 1 ) u  

(4.13) 

U1 = U-Au. 
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The two solutions of equation (4.12) are connected with each other by the transforma- 
tion 

i1 -1, = -A1+2c (4.14~) 

which yields 

The curves of m(n, s) = constant are the parabolas 

s = (n+2)-k(m+2) m f l  

(4.14b) 

(4.15) 

with vertices located on the line s+3n-6 = 0. Because of (4.14) m(Al) and m(&) 
belong to different sections of the same parabola (figure 3). Note that the transformation 
(4.14) translates the regions m < -8, -8  < m < -2 and m > 4 to 0 < m < 1, 
- 2 < m < 0 and 1 < m < 4, respectively, and vice versa (m = - 2,4 remain unchanged 
under this transformation). For our further calculations it is convenient to choose 
A I  = 1,c/lcl from (4.12) since in this case L1 = 0 for s = f = 0, ie m(n, s = 0) = n. 

Starting from the unsatz 

= b(m - 4)(4(x) + 1 )T(X) m f 4  (4.16) 

we get, after calculations similar to those in case (i), 

and 

with 

(4.17) 

(4.18) 

(4.19) 

We shall study these equations for arbitrary 8 and any values 4(0), @(O) compatible 
with the stability requirements. Two points are worth noting: 

(i) The equations (4.17), (4.18) are invariant with respect to the transformation 8, 
4 to - 8, - 4. Hence we can restrict ourselves to the cast; 8 > 0 in the following. 

(ii) Under the transformation (4.14) 8, +(O) and #(O) become - 8, - +(O) and - $'(O), 
respectively, resulting in 4(x;A1) = -+(x; &). On the other hand, as one 
would expect, the physical quantities rl, r2 remain unchanged under this 
transformation. 

4 2  -8 

With this new notation the stability conditions read 

for u,(8- 1) 2 0 
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and 

(4.20) c + n  
4 2 - 6 -  c + l  

for u,n(8- 1 )  2 0. 

Next we consider the qualitative behaviour of the solutions for large x. For 8 > 0, 
@(x) has a zero at 4 = 1 and a pole or a zero at 4 = - 1 depending on whether 8 > 1 
or 1 > 0 > 0. For these cases +‘(x)/+’(O) against @(x) is schematically drawn in figure 4. 
From this we are able to estimate the behaviour of 4(x) for large x depending on the 
initial conditions 4(0) = p and @(O) = - u , ( p -  1). Because of the simplicity of the 
discussion we think readers will repeat it by themselves more quickly than by following 
a lengthy description. The result is depicted in figure 5 where we have used the more 

Figure 4. Schematic representation of the function d’(x)/d’(O) against c$(x). 

Figure 5. Schematic representation of the function &i) against x. The cases 1 to 6 are 
listed in table 1. 
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convenient classification 8 > *,+ > 8 > 0. The different curves belong to the cases 
listed in table 1. The case 8 < 0 follows from the substitution of 8 and I$ by -8 and 
- 4, respectively. From the initial conditions #1(0), @(O) and 8 given there one obtains 
the corresponding values of the bare coupling constants by means of relations (4.13) 
and (4.19). Comparing the solutions listed in table 1 with the stability conditions (4.20) 
it turns out that only the solutions with r$ finite are stable. According to what we have 
said in 9 3 the remaining solutions hence lead to a first-order transition. They include 
also the case of large n and U > 0, U < 0,f = 0 considered recently by Wallace (1973). 
For large n we have 0 > 1 and U > 0, U < 0: 4(0) < - 1, d'(0) < 0, ie curve 6 applies, 
and leads in fact to a first-order transition. 

Table 1. 

Initial values B > i ( m > 4 o r m <  -8) 4 > 0 > 0 ( - 8 < m <  -2) 

We conclude this section with a remark on case (iii). That can be treated easily 
by taking the corresponding limits b2 + 0 and m + 4 in the final expressions of cases (i) 
and (ii), respectively (see also the following section). From equations (4.6), (4.7) one 
gets 

(4.21) 

For U < 0 the same arguments as in case (i) can be applied leading to a first-order 
transition. However, for U > 0, +(x), T,(x) become zero for large x and a second-order 
transition occurs (see 6 5). 

5. Scalingregion 

We saw in the last section that only those solutions 4, and hence rl, r2, which remain 
finite for large x, are compatible with the stability requirements. By solving the 
differential equations (4.7) and (4.17), respectively, exactly in these cases we would get 
a description of the system in the whole critical domain from the mean field region 
up to the critical point (ie from x = 0 to x = CO). This could be done only by numerical 
integration which we do not intend here (with the exception of the case n = 1 considered 
in appendix 3). Fortunately, in the large-x limit the behaviour of 4 is dominated by 
only one power of x. 
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If we look for the stable solutions of case (ii) 4 -+ k 1 we can substitute 4 +_ 1 by k 2 
in equation (4.17). Then this equation can be solved easily. First we treat the case 
4 + 1, this means m > 4 (U > 0, uA > 0) or m c 0 (uA > 0, U c 0), respectively. We 
get 

with 

and hence 
1 

mx 
r(x) 1: - 

1 2c-A, 
"(') 2(3C+2-1,)~ rz(x) 2(3c + 2 - A,)x 

ie the renormalization preserves the cubic anisotropy in the quartic term even in the 
case A1 + 0. Therefore we will designate this behaviour as strongly cubic. Inserting 
this result in equation (3.13) one obtains 

I\(x) constant X- ("+2+6c-3Ar ) /3 (n -s -211)  

Taking into account that r = (ro - roc)A(x)  and equation (3.4) it follows for the critical 
exponent y that 

2(n- 1 ) -S - -3A1  

6(n - s - 2 4 )  
y - 1  = 1- c z y, (5 .4~)  

The specific heat is proportional to the polarization operator (Larkin and Khmel'nitskii 
1969) : 

n - -S - 2'1 (4 - n - s ) / 3 ( a  - s - 2A1 ) C, cc A2(x)dx cc X s 4-n-s 

and hence the critical exponent a becomes 

4-s-n 
6(n - s - 2 4 )  

c a,. a = Yc  (5 .54  

Note that n = 4-s corresponds to a logarithmic divergence of the specific heat. For 
s = A, = 0 these are the exponents of the cubic fixed point of the renormalization 
group approach (Aharony 1973b). For small s one obtains from ( 5 . 4 ~ )  

n - 1 ( -(n - l)(n +4) 
3n 6n(n - 4) 

y,' h 1-- ( 5 . 6 ~ )  

where we have used I, 2: s/(n-4). For n > 4 this corresponds to a decrease of the 
exponent y due to the quadratic anisotropy compared with the pure quartic anisotropy 
values. However, the physical meaning of this result is unclear because one must take 
n < d < 4 when considering this anisotropy. 

The case 4 -, - 1 corresponds to the regions 0 c m e 4(u > 0, uA > 0 or 
uA > [3/(m-4)]uL > 0) and -8 c m c O ( u  > O,uA > 0 or uI > [3/(m-4)]uA > 0) in 
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the n-s plane (figure 3). The results can be derived from equation (4.17) in the same 
way as for 4 -+ 1 or more directly from the expressions (5.1H5.5~) by means of the 
transformation (4.14) : 

1 1 1  

2(c + 2 + 1 ' )X 
T,(X) 2 rl(x) = 2(c+2+i1)x 

4-s-n c -  
a = yw - = ZH. 

n+8-s+6A1 2 

(5.3b) 

(5.4b) 

(5.5b) 

I f s  = L l  = 0, T,(x) becomes zero and the exponents are those of the Heisenberg fixed 
point (Wilson 1972). On the other hand, for s, ,Il # 0 both rl and r, are different from 
zero and the behaviour is weakly cubic. For small s we have from (5.4b) 

y;' e 1-- 
n+8 

That means the anisotropy manifests itself in an increase of y. 

into account only the leading contribution to $(x) for large x. With s = s- one gets 
Case (iii) will be treated in the same manner. We integrate equation (4.21) and take 

This result can also be obtained from 
ie setting A, = c. Thus 

the expressions (5.3a, b) by taking the limit m -, 4, 

y i l ( m  = 4) = yc- '(m = 4) = 1 - [ 1 + ("; - 1) "'1; (5.44 

( 5 . 5 4  

Case (i) does not include solutions of the type considered above, ie the asymptotic 
critical region will never be reached. Nevertheless, there is a region where scaling 
holds in a restricted sense. Indeed, one obtains from equations ( 4 3 ,  (4.6) and (4.10) for 
yu 3 0 

hence 

3n-s c = I - - - . - . - -  
n+2-s  8 

(5.3d) 

(5.4d) 

(5.5d) 
4-s-n c 

n + 2 - s  4 '  
a=?-- 
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Note that case (i) (b2 > 0) can likewise be treated as case (ii) (bz < 0) but with A = c f ib 
complex. In the case of negligibly small imaginary part ib in fact one obtains the results 
(5.3d)-(5.5d) from the corresponding formulae (5.3a)-(5.5b). 

If one is only interested in the solutions for rl, r, in the scaling region one can 
make use of the fact that rl, r, vanish like rr i2  for r -+ 0 (Wilson and Kogut 1974). 
With the ansatz Ti(x) = c-lx-'yi(x) one obtains the fixed points y r  from the condition 
a y i / a x  = 0 (appendix 2). The solutions Ti(x) = c - l x - l  yi  * agree with those stated in 
the equations (5.3a-c). In case (i) the fixed points become complex. Comparing this 
result with the discussion of case (i) in 5 4  we conclude that the occurence of complex 
fixed points correspands to a first-order transition. A further remark is concerned with 
the unstable solutions of (ii) and (iii). In these cases the fixed points would be real but, 
however, the scaling region is not reached because of the violation of the stability 
conditions (4.20). The values of the bare coupling constants which allow a second- 
order transition are depicted in figure 6 for the interesting case m > 1. 

1 "  ' V  

----U 

Figure 6. The plane of the bare coupling constants. The domain of the positivity of the 
bare interaction is depicted by the horizontal hatchings. The vertical hatching shows the 
domain where a second-order transition is permitted for (a )  m > 4 and (b )  1 < m < 4. 

The expressions (5.4) and (5.5) are in agreement with the scaling law dv = 2-a 
(q 0). The critical behaviour considered above differs in two ways from that one 
would expect from universality : 

(i) A second-order transition occurs only for a definite set of initial values of the 
bare coupling constants and of the anisotropy parameterf(see figures 6 and 3, respec- 
tively). This was already observed by Brezin et al (1974) for the case f = 0. 

(ii) The critical exponents depend on the non-universal anisotropy function s ( f )  as 
well as the dimension d and the number of order-parameter components n. But this is 
not so strange since the insertion of an anisotropy in the quadratic term of the Hamilton- 
ian lowers the symmetry of the interaction. A similar situation arises in systems with 
an additional dipolar interaction (Fisher and Aharony 1973, Nattermann and Trimper 
1974). Since in a range very near to the transition point one has to regard higher- 
order contributions than considered here (ie O(c2), O(n- ')) which may lead to a decrease 
offT one can interpret the critical exponents derived above as effective critical exponents 
as a precaution. Thus it is possible that the true asymptotic exponents are in fact 
independent off: But they are just the effective critical exponents which are interesting 
from the experimental point of view. 
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6. Cooclusioo 

The original aim of this paper was to estimate the influence of cubic anisotropy both 
in the quadratic and quartic part of the Hamiltonian on the critical behaviour. The 
main results were : 

(i) For sufficientiy large values of the anisotropy parameter f (f > f-) and n > 1 
one always obtains a first-order transition (case (i)). In the renormalization group 
approach this corresponds to the occurrence of complex fixed points. However, in 
certain circumstances one is able to calculate critical exponents for temperatures not 
too close to the transition point. 

(ii) In case (ii) it is appropriate to introduce a quantity m ( n , s ( f ) )  which plays the 
role of an effective number of components. For m > 4 and m < - 8 the system displays 
strongly cubic behaviour, whereas for 0 < m < 4 the behaviour is weakly cubic passing 
over to Heisenberg-like behaviour for vanishing quadratic anisotropy. 

(iii) For -8 < m < 0 one observes the interesting fact that the behaviour becomes 
strongly or weakly cubic depending on the values of the bare coupling constants. 

Firstly we consider the case 2 < n < 4 where the influence ofthe quadratic anisotropy 
becomes drastic since it leads to a first-order transition already for small values of s(f). 
For n = 3 one gets s-  = 0.1 which yieldsf- = 0.42 as the critical value for$ These 
values are clearly smaller than those known for some substances undergoing a structural 
phase transition. However, for temperatures very close to the transition point one also 
has to take account of higher-order terms in the perturbation series (ie order e2) which 
lead to a renormalization of$ In the case wherefbecomes smaller in this way there 
will be a competition between the occurrence of a first-order transition and a change- 
over from case (i) to (ii). It appears likely that the smaller the initial value offthe more 
this mechanism will work. This leads to the possibility of explaining the first-order 
transition in KMnF, and the second-order one in SrTi0, although in both cases the 
initial values forflie above the critical valuef-. Indeed, one hasf-  1 (Gesi et a1 1972) 
and f 2: 0.96 (Stirling 1972) for KMnF, and SrTiO,, respectively. (Remember that a 
small change in f corresponds to a large one in s(f) for f 5 1 (figure 2).) A detailed 
calculation on this mechanism including the renormalization of the anisotropy parameter 
fwill be given in a forthcoming paper. 

In the case of a second-order transition the exponents y, U depend weakly on the 
anisotropy parameter$ However, if one includes the case of a first-order transition the 
influence offbecomes more pronounced. Then for SrTiO, one has, in the scaling region 
of case (i) with n = 3 a n d f ?  0.96 (ie s = 2.13), y 1. 1.43. Using the scaling relation 
/I = (d-2)y/4 (q  0) this leads to fl = 0.36 compared to y = 1.29 and /I = 0.32 for 
s = f = 0. Such a decrease of the critical exponent was actually observed in SrTiO, 
by K A Muller, who reported it in a talk given at Leipzig University in May 1974. 

For n = 0 the isotropic n-vector model allows a description of the self-avoiding 
walk problem (de Gennes 1972, des Cloizeaux 1974). It is not clear to the authors 
whether the anisotropic n-vector model considered above possesses any relevance for 
a modified version of this problem. As can be seen from figure 3 the case n = 0 exhibits 
a special variety of the behaviour. 

After this work had been performed we were informed of a recent paper of Liukziutov 
and Prokrovskii (1975) who treat the special case f= 0, n = 2 of our model. With 
reference to the values of the bare coupling constants which lead to a first- or second- 
order transition, respectively, these authors came to the same conclusions as in the 
present paper. This is remarkable since Brezin et a1 (1974) found a smaller domain 
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for the bare coupling constants permitting a second-order transition in the case n < 4 
(in particular uo  > 0) than Liukziutov and Prokrovskii (1975) for n = 2 and the present 
authors for all 0 < n < 4 (see figure 6).  

The conclusion was drawn by Liukziutov and Prokrovskii (1975) and other authors 
(eg Aharony 1974) that the various types of changeover from second- to first-order 
transitions by means of the variation of the bare coupling constants correspond to the 
occurrence of tricritical points. Additionally we obtain our case (iii) as a new kind of 
tricritical point since we also consider the case f # 0. The corresponding tricritical 
exponents are thence given in equations (5.3c)-(5.5c). However, we believe that such 
kinds of tricritical points are less interesting than the usual Riedel-Wegner type because 
all phenomena arise as boundary cases of ordinary critical behaviour. 
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Appendix 1 

For the evaluation of expression (3 .3)  we use the Feynman trick 

( A B ) - ’  = [ ( l - ~ ) A + d I l - ~ d ~ .  sd 
Then in the case of zero external momentum one gets 

qd- dq Aap(r,  p = 0)  = ( 2 ~ ) - ~  dad[ 1 -fn,2 - rf(nf  - n:)] - d l  ’ 

4. n, = - 
141 , 

l a p ( f )  includes the angular part of (A.1): 

I&) = iK;1(2n)-dJ’dadQd[l - f n ~ - ~ f ( n ~ - n f ) ] - ~ ! ~  

= p ( f ) [ d , p + ( l  -is(f,)(1 - 4 p ) l  
with 

s ( f )  = 4 1 -  2( 1 - f ) ” *  tan-’(  
f )] [ f  2(1 - f ) ” 2  ’ 

(A.4) 

The anisotropy function s ( f )  is a monotonic increasing function offwith a large slope 
for f 5 1, 0 < s ( f )  < 4. 
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We want to demonstrate that the fixed point equations in the sense of the renormaliza- 
tion group approach can be obtained within the parquet approximation. It is well 
known from general considerations that in the scaling region the renormalized vertex 
parts ri(x) are proportional to r‘” cc  EX)-^ (Wilson and Kogut 1974). Consequently, 
we make the ansatz 

i = 1,2. (A.5) 

In the scaling domain the x dependence of the y i  disappears and the fixed points 7: 
follow from the condition dyi(x)/dx = 0. One gets 

1 
ri(x) = Yi(x)- 

EX 

For s = 0 the fixed points following from ( A h )  coincide with those found by Cowley 
and Bruce (1973). The fixed points are real. If s # 0, the fixed points are determined 
by 

y; = y?[cf (c2 - s/3)”2]. 

For fs > c2 (case (i)) the fixed points become complex. 

Appendix 3 

The case n = 1 can be treated in the simplest way by the addition of the equations (3.7) : 

f r  = (r, + r,)‘ = - 3T2 

hence 

f ( x )  = (U + U ) [  1 + 3(u + U)X] - l .  (‘4.8) 
Here we use this case as a test of our results of $5 4 and 5. From (4.3) we find s + = s - = 3 
and hence case (ii) applies. With A l  = -is, 9 = -1 we find 

r , ( X )  = U((U +$U) [ I + 3(U + U ) X ]  - + ( I  -&)U) - lT(x) 

r2(x) = U - { ( G  + +U) [ 1 + 3 ( ~  + U)X] - l I 3  - & U }  r,(x) (A.9) 

and hence rl + r, = f .  In fact, the expressions (A.9) show the complicated evolution 
of the renormalized vertex parts as a function of x (increasing x corresponds to decreasing 
temperature differences T -  T,). In the scaling region we obtain from (A.9) 

(A.lO) 

in agreement with our result (5.3b). The critical exponents are those of the Ising model 
and do not depend on s(f) as must be the case. 
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